- Peso total
- 10 GB+
- Audio
- Español
- Nivel
-
- Principiante
- Intermedio
- Horas en Total
- 17+ Hours
- Contraseña Winrar
- ebzo.net
- Actualización del Curso
- 05/2021
Requisitos
Machine Learning para Investigación con WEKA. De 0 a Experto
Conoce las técnicas más potente y necesarias que un investigador debe tener en su fase de de desarrollo. Weka Workbench
Contenido Actualizado: Julio 2020
Entre los diferentes software que existen de machine learning automatizado, destaca, sobre todos los demás, Weka Workbench, que es un software libre y gratuito. Este potente software nos ofrece un amplio espectro de opciones para utilizar machine learning sobre cualquier conjunto de datos que tengamos, ya sea de nuestros experimentos u obtenidos de diferentes bancos de datos libres, de manera muy sencilla, sin tener grandes conocimientos sobre el modelo matemático de un algoritmo y, lo más interesante, sin conocimientos de programación.
Son nueve unidades temáticas, en las que contará con vídeos, actividades, temario, foros que le ayudarán a realizar el curso de manera eficiente y entretenida.
Este curso se enfoca en un subcampo específico de la minería de datos llamado modelado predictivo (aprendizaje supervisado) y clústering (Aprendizaje No Supervisado). Este es el campo de la minería de datos que es el más útil en la industria e investigación siendo estas técnicas las más potente y necesarias que un investigador debe tener en su fase de de desarrollo.
A diferencia de las diferentes formas de estadística, donde los modelos se utilizan para comprender los datos, el modelado predictivo se centra en el desarrollo de modelos que hacen las predicciones más precisas a expensas de explicar el por qué se hacen las predicciones. A diferencia del campo más amplio de minería de datos que podría usarse con datos en cualquier formato, el modelado predictivo (aprendizaje supervisado)) y clústering (Aprendizaje No Supervisado) se enfoca principalmente en datos tabulares (por ejemplo, tablas de números como una hoja de cálculo).
En este contexto, el curso pretende otorgar a los estudiantes los conceptos básicos e intermedios relacionados al análisis y tratamiento de datos pero llevando este proceso más allá pudiendo aplicar algoritmos basados en aprendizaje, es decir, Machine Learning. Para ello, el curso hará uso de un sistema muy utilizado en cualquier ámbito y línea de investigación como es Weka. Weka es una plataforma de muy sencillo uso que nos permite utilizar todos los conceptos de Minería de datos sin tener que saber programar, es decir, es una plataforma específicamente desarrollara para cualquier investigador que requiera de estas técnicas pero que no tiene un base previa computacional.
Curso Virtual el curso es virtual para poder llevarlo a cabo se tiene el siguiente esquema:
El aprendizaje será un proceso continuo donde los estudiantes tienen la oportunidad de ir trabajando con el software de machine learning practicando lo expuesto en la parte de teoría.
La formación te permitirá convertirte en un experto en la materia, y todo ello desde una formación principalmente práctica. A través de variadas actividades y proyectos completos podrás adquirir los conocimientos suficientes para ejercer profesionalmente de forma solvente. Además conocerás en detalle mi flujo de trabajo a la hora de afrontar un proyecto profesional. Para la realización de este curso no vas a necesitar el equipo informático más potente del mercado, ya que el software empleado durante formación online se encuentra perfectamente optimizado y su uso es muy fluido en todo tipo de equipos, tanto en PC como en Mac.
Puedes elegir ver todas las lecciones de forma secuencial (lineal) y aprovecharlas al máximo la formación. Pero también puedes decidir ver este curso como una guía de referencia. Las clases están claramente organizadas en secciones lógicas y puedes decidir visualizar solo las clases que te resulten más importantes según tus necesidades formativas. A excepción de las lecciones PRO, la mayoría de las lecciones son independientes para que puedas comprender los conceptos de cada lección sin tener que ver las lecciones anteriores del curso.
Es excepcional el aumento en la demanda de profesionales en este ámbito por parte de las empresas de todo el mundo actualmente. Para desarrollar el programa formativo propuesto no ser requieren grandes conocimientos previos, ya que la formación se acomete desde un nivel de usuario 0. El curso está orientado a aquellos creativos que quieran ampliar sus skills (habilidades) y conocer múltiples trucos, consejos, recursos y recomendaciones, de la mano de los instructores Manuel Castillo y Álvaro García. Además todas las formaciones de Udemy disponen acceso automático al curso, sin limitación de tiempo, disponibilidad 24/7 (24 horas al día los 7 días de la semana), sin caducidad y con garantía de devolución.
¿Para quién es este curso?
- Para la realización de este curso no ser requieren grandes conocimientos previos, ya que la formación se acomete desde un nivel de usuario 0.
- Para la realización de este curso no vas a necesitar el equipo informático más potente del mercado, ya que el software empleado en la formación se encuentra perfectamente optimizado y su uso es muy fluido en todo tipo de equipos, tanto en PC como en Mac.
- Durante el curso trabajaremos con la última versión del programa, pero no te preocupes si tienes una versión anterior, ya que las distintas versiones difieren muy poco entre sí. Si existe algún cambio importante entre las distintas versiones hablaremos de ello durante la formación.
- Cuando compres el curso vas a poder acceder a las clases cuando y donde quieras. El curso se queda en tu cuenta de Udemy para siempre.

- El más importante requisito para realizar este curso es el entusiasmo y la motivación por aprender nuevas habilidades que aumenten tus competencias profesionales.
Machine Learning para Investigación con WEKA. De 0 a Experto
Conoce las técnicas más potente y necesarias que un investigador debe tener en su fase de de desarrollo. Weka Workbench
Contenido Actualizado: Julio 2020
Entre los diferentes software que existen de machine learning automatizado, destaca, sobre todos los demás, Weka Workbench, que es un software libre y gratuito. Este potente software nos ofrece un amplio espectro de opciones para utilizar machine learning sobre cualquier conjunto de datos que tengamos, ya sea de nuestros experimentos u obtenidos de diferentes bancos de datos libres, de manera muy sencilla, sin tener grandes conocimientos sobre el modelo matemático de un algoritmo y, lo más interesante, sin conocimientos de programación.
Son nueve unidades temáticas, en las que contará con vídeos, actividades, temario, foros que le ayudarán a realizar el curso de manera eficiente y entretenida.
Este curso se enfoca en un subcampo específico de la minería de datos llamado modelado predictivo (aprendizaje supervisado) y clústering (Aprendizaje No Supervisado). Este es el campo de la minería de datos que es el más útil en la industria e investigación siendo estas técnicas las más potente y necesarias que un investigador debe tener en su fase de de desarrollo.
A diferencia de las diferentes formas de estadística, donde los modelos se utilizan para comprender los datos, el modelado predictivo se centra en el desarrollo de modelos que hacen las predicciones más precisas a expensas de explicar el por qué se hacen las predicciones. A diferencia del campo más amplio de minería de datos que podría usarse con datos en cualquier formato, el modelado predictivo (aprendizaje supervisado)) y clústering (Aprendizaje No Supervisado) se enfoca principalmente en datos tabulares (por ejemplo, tablas de números como una hoja de cálculo).
En este contexto, el curso pretende otorgar a los estudiantes los conceptos básicos e intermedios relacionados al análisis y tratamiento de datos pero llevando este proceso más allá pudiendo aplicar algoritmos basados en aprendizaje, es decir, Machine Learning. Para ello, el curso hará uso de un sistema muy utilizado en cualquier ámbito y línea de investigación como es Weka. Weka es una plataforma de muy sencillo uso que nos permite utilizar todos los conceptos de Minería de datos sin tener que saber programar, es decir, es una plataforma específicamente desarrollara para cualquier investigador que requiera de estas técnicas pero que no tiene un base previa computacional.
Curso Virtual el curso es virtual para poder llevarlo a cabo se tiene el siguiente esquema:
- Lectura del material el EVD. Los participantes debe leer y revisar los contenidos teóricos que se tienen en el EVD, correspondiente a cada unidad.
- Visualización de Videos. Como ayuda al aprendizaje se tienen videos para cada unidad, los cuales deben ser visualizados por el alumnado.
- Autoaprendizaje. Se debe resolver el material para refuerzo y aplicación de los contenidos teóricos/prácticos antes de la evaluación.
- Sofware de trabajo. Se utilizará el software libre Weka Workbench.
- Foro de consultas. Este espacio está destinado para que los estudiantes formulen sus preguntas con respecto a la temática desarrollada y el docente tutor será el responsable de absolver sus interrogantes.
El aprendizaje será un proceso continuo donde los estudiantes tienen la oportunidad de ir trabajando con el software de machine learning practicando lo expuesto en la parte de teoría.
La formación te permitirá convertirte en un experto en la materia, y todo ello desde una formación principalmente práctica. A través de variadas actividades y proyectos completos podrás adquirir los conocimientos suficientes para ejercer profesionalmente de forma solvente. Además conocerás en detalle mi flujo de trabajo a la hora de afrontar un proyecto profesional. Para la realización de este curso no vas a necesitar el equipo informático más potente del mercado, ya que el software empleado durante formación online se encuentra perfectamente optimizado y su uso es muy fluido en todo tipo de equipos, tanto en PC como en Mac.
Puedes elegir ver todas las lecciones de forma secuencial (lineal) y aprovecharlas al máximo la formación. Pero también puedes decidir ver este curso como una guía de referencia. Las clases están claramente organizadas en secciones lógicas y puedes decidir visualizar solo las clases que te resulten más importantes según tus necesidades formativas. A excepción de las lecciones PRO, la mayoría de las lecciones son independientes para que puedas comprender los conceptos de cada lección sin tener que ver las lecciones anteriores del curso.
Es excepcional el aumento en la demanda de profesionales en este ámbito por parte de las empresas de todo el mundo actualmente. Para desarrollar el programa formativo propuesto no ser requieren grandes conocimientos previos, ya que la formación se acomete desde un nivel de usuario 0. El curso está orientado a aquellos creativos que quieran ampliar sus skills (habilidades) y conocer múltiples trucos, consejos, recursos y recomendaciones, de la mano de los instructores Manuel Castillo y Álvaro García. Además todas las formaciones de Udemy disponen acceso automático al curso, sin limitación de tiempo, disponibilidad 24/7 (24 horas al día los 7 días de la semana), sin caducidad y con garantía de devolución.
¿Para quién es este curso?
- Aquellos usuarios del programa que quieran ampliar el dominio de mismo y conocer múltiples trucos, consejos y recursos para esta herramienta.
- Estudiantes que quieran acceder a una formación innovadora orientada a la metodología de trabajo del mundo laboral, en un formato de e-learining para aprender donde quieran y a su propio ritmo.
- Además, el curso está diseñado para que cualquier estudiante universitario, investigador o tecnólogo que se encuentre realizando o necesite realizar diferentes experimentos a través de grandes conjuntos de datos para poder sintetizarlos en alguna salida predictiva puedan utilizar los muy diferentes recursos de machine learning que nos pone a nuestra disposición el software Weka Workbench.
- El curso de Machine learning para la investigación está dirigido a personas que tengan pocos conocimientos de machine learning y quieran adentrarse a este apasionante mundo de dentro del campo de modelado predictivo.
- Sobre todo aquellas personas en crecer profesionalmente, aumentar sus habilidades y formar parte de nuestra comunidad educativa.
- Principalmente aquellos que quieran aumentar sus posibilidades de empleabilidad, contratación y/o promocionar dentro de su sector.